
NAG C Library Function Document

nag_dbdsqr (f08mec)

1 Purpose

nag_dbdsqr (f08mec) computes the singular value decomposition of a real upper or lower bidiagonal
matrix, or of a real general matrix which has been reduced to bidiagonal form.

2 Specification

void nag_dbdsqr (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer ncvt,
Integer nru, Integer ncc, double d[], double e[], double vt[], Integer pdvt,
double u[], Integer pdu, double c[], Integer pdc, NagError *fail)

3 Description

nag_dbdsqr (f08mec) computes the singular values, and optionally, the left or right singular vectors of a
real upper or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition
(SVD) of B as

B ¼ U�V T :

Here � is a diagonal matrix with real diagonal elements �i (the singular values of B), such that

�1 � �2 � � � � � �n � 0;

U is an orthogonal matrix whose columns are the left singular vectors ui; V is an orthogonal matrix whose
rows are the right singular vectors vi. Thus

Bui ¼ �ivi and BTvi ¼ �iui; i ¼ 1; 2; . . . ; n:

To compute U and/or V T , the arrays U and/or vt must be initialised to the unit matrix before nag_dbdsqr
(f08mec) is called.

The function may also be used to compute the SVD of a real general matrix A which has been reduced to

bidiagonal form by an orthogonal transformation: A ¼ QBPT . If A is m by n with m � n, then Q is m

by n and PT is n by n; if A is n by p with n < p, then Q is n by n and PT is n by p. In this case, the

matrices Q and/or PT must be formed explicitly by nag_dorgbr (f08kfc) and passed to nag_dbdsqr
(f08mec) in the arrays u and/or vt respectively.

nag_dbdsqr (f08mec) also has the capability of forming UTC, where C is an arbitrary real matrix; this is
needed when using the SVD to solve linear least-squares problems.

nag_dbdsqr (f08mec) uses two different algorithms. If any singular vectors are required (i.e., if ncvt > 0
or nru > 0 or ncc > 0), the bidiagonal QR algorithm is used, switching between zero-shift and implicitly
shifted forms to preserve the accuracy of small singular values, and switching between QR and QL
variants in order to handle graded matrices effectively (see Demmel and Kahan (1990)). If only singular
values are required (that is, if ncvt ¼ nru ¼ ncc ¼ 0), they are computed by the differential qd algorithm
(see Fernando and Parlett (1994)), which is faster and can achieve even greater accuracy.

The singular vectors are normalized so that kuik ¼ kvik ¼ 1, but are determined only to within a factor
�1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.

Comput. 11 873–912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer.

Math. 67 191–229

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08mec

[NP3645/7] f08mec.1

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether B is an upper or lower bidiagonal matrix as follows:

if uplo ¼ Nag Upper, B is an upper bidiagonal matrix;

if uplo ¼ Nag Lower, B is a lower bidiagonal matrix.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix B.

Constraint: n � 0.

4: ncvt – Integer Input

On entry: ncvt, the number of columns of the matrix V T of right singular vectors. Set ncvt ¼ 0 if
no right singular vectors are required.

Constraint: ncvt � 0.

5: nru – Integer Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set nru ¼ 0 if no left
singular vectors are required.

Constraint: nru � 0.

6: ncc – Integer Input

On entry: ncc, the number of columns of the matrix C. Set ncc ¼ 0 if no matrix C is supplied.

Constraint: ncc � 0.

7: d½dim� – double Input/Output

Note: the dimension, dim, of the array d must be at least maxð1; nÞ.
On entry: the diagonal elements of the bidiagonal matrix B.

On exit: the singular values in decreasing order of magnitude, unless fail > 0 (in which case see
Section 6).

8: e½dim� – double Input/Output

Note: the dimension, dim, of the array e must be at least maxð1; n� 1Þ.
On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: the array is overwritten, but if fail > 0 see Section 6.

f08mec NAG C Library Manual

f08mec.2 [NP3645/7]

9: vt½dim� – double Input/Output

Note: the dimension, dim, of the array vt must be at least maxð1; pdvt� ncvtÞ when
order ¼ Nag ColMajor and at least maxð1; pdvt� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vt½ðj� 1Þ � pdvtþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vt½ði� 1Þ � pdvtþ j� 1�.
On entry: if ncvt > 0, vt must contain an n by ncvt matrix. If the right singular vectors of B are
required, ncvt ¼ n and vt must contain the unit matrix; if the right singular vectors of A are

required, vt must contain the orthogonal matrix PT returned by nag_dorgbr (f08kfc) with
vect ¼ Nag FormP.

On exit: the n by ncvt matrix V T or V TPT of right singular vectors, stored by rows.

vt is not referenced if ncvt ¼ 0.

10: pdvt – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vt.

Constraints:

if order ¼ Nag ColMajor,
if ncvt > 0, pdvt � maxð1;nÞ;
otherwise pdvt � 1;

if order ¼ Nag RowMajor, pdvt � maxð1; ncvtÞ.

11: u½dim� – double Input/Output

Note: the dimension, dim, of the array u must be at least maxð1;pdu� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdu� nruÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix U is stored in u½ðj� 1Þ � pduþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix U is stored in u½ði� 1Þ � pduþ j� 1�.

On entry: if nru > 0, u must contain an nru by n matrix. If the left singular vectors of B are
required, nru ¼ n and u must contain the unit matrix; if the left singular vectors of A are required,
u must contain the orthogonal matrix Q returned by nag_dorgbr (f08kfc) with
vect ¼ Nag FormQ.

On exit: the nru by n matrix U or QU of left singular vectors, stored as columns of the matrix.

u is not referenced if nru ¼ 0.

12: pdu – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array u.

Constraints:

if order ¼ Nag ColMajor, pdu � maxð1;nruÞ;
if order ¼ Nag RowMajor, pdu � maxð1; nÞ.

13: c½dim� – double Input/Output

Note: the dimension, dim, of the array c must be at least maxð1;pdc� nccÞ when
order ¼ Nag ColMajor and at least maxð1; pdc� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: the n by ncc matrix C if ncc > 0.

On exit: c is overwritten by the matrix UTC.

c is not referenced if ncc ¼ 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08mec

[NP3645/7] f08mec.3

14: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor,
if ncc > 0, pdc � maxð1;nÞ;
otherwise pdc � 1;

if order ¼ Nag RowMajor, pdc � maxð1; nccÞ.

15: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, ncvt = hvaluei.
Constraint: ncvt � 0.

On entry, nru = hvaluei.
Constraint: nru � 0.

On entry, ncc = hvaluei.
Constraint: ncc � 0.

On entry, pdvt ¼ hvaluei.
Constraint: pdvt > 0.

On entry, pdu ¼ hvaluei.
Constraint: pdu > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdvt ¼ hvaluei, ncvt ¼ hvaluei.
Constraint: pdvt � maxð1; ncvtÞ.
On entry, pdu ¼ hvaluei, nru ¼ hvaluei.
Constraint: pdu � maxð1; nruÞ.
On entry, pdu ¼ hvaluei, n ¼ hvaluei.
Constraint: pdu � maxð1; nÞ.
On entry, pdc ¼ hvaluei, ncc ¼ hvaluei.
Constraint: pdc � maxð1; nccÞ.

NE_INT_3

On entry, n ¼ hvaluei, ncvt ¼ hvaluei, pdvt ¼ hvaluei.
Constraint: if ncvt > 0, pdvt � maxð1; nÞ;
otherwise pdvt � 1.

On entry, n ¼ hvaluei, ncc ¼ hvaluei, pdc ¼ hvaluei.
Constraint: if ncc > 0, pdc � maxð1;nÞ;
otherwise pdc � 1.

f08mec NAG C Library Manual

f08mec.4 [NP3645/7]

NE_CONVERGENCE

hvaluei off-diagonals did not converge. The arrays d and e contain the diagonal and off-diagonal
elements, respectively, of a bidiagonal matrix orthogonally equivalent to B.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to
bidiagonal form (prior to calling the function) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If �i is an exact singular value of B and ~��i is the corresponding computed value, then

j~��i � �ij � pðm;nÞ��i

where pðm;nÞ is a modestly increasing function of m and n, and � is the machine precision. If only
singular values are computed, they are computed more accurately (i.e., the function pðm;nÞ is smaller),
than when some singular vectors are also computed.

If ui is the corresponding exact left singular vector of B, and ~uui is the corresponding computed left
singular vector, then the angle �ð~uui; uiÞ between them is bounded as follows:

�ð~uui; uiÞ �
pðm;nÞ�
relgapi

where relgapi is the relative gap between �i and the other singular values, defined by

relgapi ¼ min
i6¼j

j�i � �jj
ð�i þ �jÞ

:

A similar error bound holds for the right singular vectors.

8 Further Comments

The total number of floating-point operations is roughly proportional to n2 if only the singular values are

computed. About 6n2 � nru additional operations are required to compute the left singular vectors and

about 6n2 � ncvt to compute the right singular vectors. The operations to compute the singular values
must all be performed in scalar mode; the additional operations to compute the singular vectors can be
vectorized and on some machines may be performed much faster.

The complex analogue of this function is nag_zbdsqr (f08msc).

9 Example

To compute the singular value decomposition of the upper bidiagonal matrix B, where

B ¼

3:62 1:26 0:00 0:00
0:00 �2:41 �1:53 0:00
0:00 0:00 1:92 1:19
0:00 0:00 0:00 �1:43

1
CCA

0
BB@ :

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08mec

[NP3645/7] f08mec.5

See also the example for nag_dorgbr (f08kfc), which illustrates the use of the function to compute the
singular value decomposition of a general matrix.

9.1 Program Text

/* nag_dbdsqr (f08mec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pdvt, pdu, d_len, e_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
double *c=0, *d=0, *e=0, *u=0, *vt=0;

INIT_FAIL(fail);
Vprintf("f08mec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
#define U(I,J) u[(J-1)*pdu + I - 1]
#define VT(I,J) vt[(J-1)*pdvt + I - 1]

order = Nag_ColMajor;
pdu = n;
pdvt = n;

#else
#define U(I,J) u[(I-1)*pdu + J - 1]
#define VT(I,J) vt[(I-1)*pdvt + J - 1]

order = Nag_RowMajor;
pdu = n;
pdvt = n;

#endif
d_len = n;
e_len = n-1;

/* Allocate memory */
if (!(c = NAG_ALLOC(1 * 1, double)) ||

!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(u = NAG_ALLOC(n * n, double)) ||
!(vt = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read B from data file */
for (i = 1; i <= n; ++i)

Vscanf("%lf", &d[i-1]);
Vscanf("%*[^\n] ");
for (i = 1; i <= n-1; ++i)

Vscanf("%lf", &e[i-1]);

f08mec NAG C Library Manual

f08mec.6 [NP3645/7]

Vscanf("%*[^\n] ");
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}

/* Initialise U and VT to be the unit matrix */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

{
U(i,j) = 0.0;
VT(i,j) = 0.0;

}
U(i,i) = 1.0;
VT(i,i) = 1.0;

}

/* Calculate the SVD of B */
f08mec(order, uplo, n, n, n, 0, d, e, vt, pdvt, u, pdu, c,

1, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08mec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print singular values, left & right singular vectors */
Vprintf("\nSingular values\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
vt, pdvt, "Right singular vectors, by row", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

u, pdu, "Left singular vectors, by column", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (u) NAG_FREE(u);
if (vt) NAG_FREE(vt);

return exit_status;
}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08mec

[NP3645/7] f08mec.7

9.2 Program Data

f08mec Example Program Data
4 :Value of N
3.62 -2.41 1.92 -1.43
1.26 -1.53 1.19 :End of matrix B
’U’ :Value of UPLO

9.3 Program Results

f08mec Example Program Results

Singular values
4.0001 3.0006 1.9960 0.9998

Right singular vectors, by row
1 2 3 4

1 0.8261 0.5246 0.2024 0.0369
2 0.4512 -0.4056 -0.7350 -0.3030
3 0.2823 -0.5644 0.1731 0.7561
4 0.1852 -0.4916 0.6236 -0.5789

Left singular vectors, by column
1 2 3 4

1 0.9129 0.3740 0.1556 0.0512
2 -0.3935 0.7005 0.5489 0.2307
3 0.1081 -0.5904 0.6173 0.5086
4 -0.0132 0.1444 -0.5417 0.8280

f08mec NAG C Library Manual

f08mec.8 (last) [NP3645/7]

	f08mec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ncvt
	nru
	ncc
	d
	e
	vt
	pdvt
	u
	pdu
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

